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$ Physics Department, University of Hong Kong and Hong Kong Baptist College, 
Kowloon, Hong Kong 
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Abstract. We obtain a new N-soliton solution to the modified KdV equation with non-zero 
vacuum parameter b using the inverse scattering method (see Zakharov and Shabat and 
Ablowitz et al)  under a non-vanishing condition (Kawata and Inoue). As demonstrations, 
we study the special features of the one-soliton and two-solitons in detail. The amplitude, 
width, and magnitude of the velocity of these solitons are  all dependent on b. They all 
move in the positive direction-such a characteristic is different from that of the KdV 
solitons. 

1. Introduction 

Recently, we have obtained new solutions to the Korteweg-de Vries equation U,+ 
12uu, + U,,, = 0 using our Backlund transformation (Au and Fung 1982, 1984, 
Wahlquist and Estabrook 1975, Loo Win et a1 1979) and have discovered that the 
vacuum parameter b has special physical meaning. We followed up our work by 
revisiting the inverse scattering theory and have obtained the same one-soliton K d v  

solution using the generalised inverse scattering method (Au-Yeung er a1 1983) where 
u ( x ,  t )+ b # 0 as x +  fa. To pursue our work further, we intend to solve other 
nonlinear problems under the non-vanishing boundary condition (i.e. the solution 
tends to non-zero constant as x tends to *too). 

In this paper, we apply the inverse scattering method to find solutions of the 
modified K d v  equation. Along this line of development, Zakharov and Shabat (1972) 
proposed a two-dimensional inverse scattering theory for the nonlinear Schrodinger 
equation and obtained solutions having vanishing asymptotic form. Ablowitz, Kaup, 
Newel1 and Segur (1973) have generalised the above method and have found the Lax 
pairs for a number of types of nonlinear equations (the ZS-AKNS inverse method). 
Previously, the inverse scattering method is used to solve nonlinear equations under 
vanishing boundary condition. In 1973 Zakharov and Shabat analysed the nonlinear 
Schrodinger equation under non-vanishing boundary conditions; however, the analyti- 
cal properties of the associated eigenvalue problem has not been treated. Kawata and 
Inoue (1977,1978) made clear the analytical property of the AKNS eigenvalue problem 
(Ablowitz et a1 1973) under certain non-vanishing conditions (see § 2.1). We have 
used the method of Kawata and Inoue to study the modified K d v  equation under a 
non-vanishing boundary condition, and have obtained a new N-soliton solution with 
non-zero vacuum parameter 6. We study both the one-soliton and two-soliton solutioris 
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in detail and we find that these solitons propagate only along the positive direction, 
whatever the values of b. The amplitude, width, and the magnitude of the velocity 
are all dependent on b. 

2. The inverse scattering method for the modified K d v  equation under the non- 
vanishing boundary condition U + b as x + f o o  

2.1. General formalism 

Let u ( x ,  t )  be a solution of the modified K d v  equation 

u,+6u2u,+u, , ,=0.  

The AKNS eigenvalue problem for the modified K d v  equation is 

where 

q(x, t )  = u ( x ,  t )  and r(x, t )  = -q(x, t ) .  

The corresponding time evolution equation is 

(3) 

(4) 

where 

A(A) = -4iA3 - 2iAqr + rq, - qr,, 

B(A)  = 4A2q+2iAq, +2q2r-q,,, ( 5 )  
C(A) = 4A2r-2iAr, +2qr2- r,,. 

The matrices D(A)  and F ( A )  satisfy the well known integrable condition of equations 
(2) and (4): 

D, - F, + DF - FD = 0. ( 6 )  
In this investigation, we seek for real solution u ( x ,  t )  to the modified K d v  equation 

b 2 =  -Ao,  

(1) under the following boundary condition: 

(7) 2 u ( x ,  t )  + b as x + *too; A,, is pure imaginary, 

and we require that u ( x ,  t )  is sufficiently smooth and all the x derivatives of U tend 
to zero as x + * w  From (3)  and ( 7 ) ,  we see that the potentials q(x, t )  and r(x, t )  
satisfy the following non-vanishing condition: 

q(x, t )  + q* as x +  *CO, r(x, t )  + r* as x + *too, 

and 

q+r+ = q-r- = A:. (8) 
The AKNS eigenvalue problem under the non-vanishing condition (8) is the case 
considered by Kawata and Inoue (1977, 1978). They have clarified the analytical 
properties of this problem. Now we apply their method to (2) under condition (8) 
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and obtain a new N-soliton solution with non-zero vacuum parameter b for the 
modified KdV equation. The details of the derivation are given in $ 2.3 and $ 2.4.  In 
0 2.2 some of the crucial results of Kawata and Inoue are listed for convenience in 
our deduction. 

2.2. Some crucial results of Kawata and Inoue 

According to Kawata and Inoue (1977,  1978),  the Jost matrices @ + ( A ,  5)= 
(@:(A, J ) ,  @;(A, g)) and @-(A, 5) (@;(A, l ) ,  @;(A, 5)) are defined as the solutions 
of (2) under the conditions 

( 9 a )  

The scattering matrix S =  (:;; ti:) is defined by the following relation: 

@-(A,  5; x)  = @ + ( A ,  5; 5). (12) 

The function 5 = ( A 2  - A;)‘’* is a multi-valued function and is set to be single-valued 
by introducing two Riemann surfaces. When A. is pure imaginary, as in our case of 
interest (see ( 7 ) ) ,  a cut is set in the region (-Ao,  Ao) and the upper (lower) Riemann 
surface is defined to be l+ A ( l+ - A )  as [ A I +  W. The sign of Im 5 is equal (opposite) 
to the sign of Im A on the upper (lower) surface. 

Kawata and Inoue assume the following representation about the Jost Matrices @*: 

Then functions K * ( x ,  y)  satisfy the following three equations: 

(+3K * ( X, ~ ) ( + 3  - K *( X, X)  + AD*( A ; X, t )  = 0, 

K * ( x ,  Y ) + O  as y + *CO, 

where 
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q(', ' ) - q * )  ('6) 
r(x, t )  - r* 0 

AD'( A ; X, t )  E D( A ; X, t )  - D'( A )  = 

U , l ( l  0 -1 0). 

Assuming the zeros of Sll(A, 5; 0) in the region Im 5 >  0 are 

A,, 5, = ( A f - A i ) " 2 ,  j =  1 , 2 , .  . . , N, (18) 

the Gel'fand-Levitan equation for the function K+(x, y)  is (Kawata and Inoue 1977, 
1978) 

where 

They have pointed out that there exist certain symmetries about the AKNS eigenvalue 
problem under the non-vanishing condition (8).  First of all, it has been shown 

SII(A, 5) = ( q - / q + ) s 2 , ( A ,  -5), 
SI,(& 5 )  = ( - r - / q + ) s 2 l ( A 3  -51, 

S I l ( A 9  -5) = ( q - / q + ) S , , ( A ?  63, 
SI,(& -5) = ( - r - / q + ) S 2 l ( A ,  5 ) .  

(27) 

Next, when r(x, t )  = -4(x, t ) ,  the S matrix has the following additional property: 
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also, K * ( x ,  y) has the following property: 

2.3. Relevant results for the modified Kdv equation 

In our study, we derive the time dependency of the scattering matrix S = (& :;;) for 
the modified K d v  equation. Employing equations (2), (4) and (12), we obtain the 
following result: 

S(A, 5 ;  t )  = exp[-2i5(2A2+ A ; ) u 3 t ] S ( A ,  5 ;  0) exp[2i5(2A2+ A$a3t], (32a) 
or 

S I I ( A .  5; t )  = S I I ( A ,  5 ;  01, S12(A, 5; t )  =exp[-4i5(2A2+A,2)fISl2(A, 5 ;  01, 
(32b) 

S22(A, 5; t )  = S22(A,  3;  0). 

From (3), we have r ( x ,  t )  = -q(x,  t ) .  Also, since u(x, t )  is real, we see from (3) 
that the relation r ( x ,  t )  = -q*(x, t )  is also true. Hence relations (28) and (31) are valid 
for our case of study. Using (221, (27) and (28), we derive the following relations 
relevant for the modified K d v  equation: 

(33) 

S21(A, 5; t )  = ~ X P [ ~ ~ ~ ( ~ A ~ + A ; ) ~ I S Z ~ ( A ,  5 ;  01, 

(q- /q+)Sl l (A,  5 )  = S11(-A, 5 )  
and 

m(-A)  = m ( A ) ,  (34) 

where A and -A are in different Riemann sheets. Also, using (28) and (31), we have 

m(-A*) = m(A)*.  (35) 

From (33), we see that if A is a zero of Sll  in a Riemann surface, then -A is also a 
zero of SI1 in the other Riemann surface. We also see from (35) that m ( A )  is real if 
A is pure imaginary. 

2.4. The N-soliton solution with non-zero vacuum parameter 

We will solve the Gel’fand-Levitan equation (19) for a special situation. Suppose: 
(i) the continuous component 

M y ;  0) = 0,  (36) 

(ii) Sll  has 2 N  zeros in the region Im 5>0,  namely, (Ai, c,) and ( - A j ,  l j ) ,  j =  
1 , .  . . , N, and A j  are pure imaginary; 

A, = iTi, where T~ are positive real constant. (37) 
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Since A i  = -b2 by (7),  so we have 

S; = i( q: - b2)"2. 

Also, from (34) and (3.9, we have 

m(A,) = m(-A,) 

and 

m(A,) is real for j =  1 , .  . . , N. 

Substituting (36), (37) and (39) into (19), (20) and (21), we obtain 

-il,m (A,) exp[4i(, (2A; + A i) t ]  
r+m(A,) exp[4il,(2A;+Ai)t] 

X exp[il,(y + y')]  dy' = 0. 

Take a representation of ("c) as 
K22 

where 

From (29), we have 

hence 

(38) 

(39) 

Substituting (42) and (45) into (41), we arrive at 

where 

a ,= -il,m(A,) exp[4il,(2A:+Ai)t] and Z,= -r+m(A,) exp[4il,(2A:+Ai)t]. (46) 

The determinant of the coefficient matrix is 

E B  
'=I - -B  El '  (47) 
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and 
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(48) 

(49) 

The solution of (41a)  is given by 

K,(X)=-IBj(/A andzl(X)=-IBN+jl/A j = 1 , . .  . , N ,  

where B,, with n = 1, . . . , N, N + 1, . . . ,2N,  is the matrix obtained by replacing the 
nth column of the matrix (-: E) by the following column 

Using (42) and ( 5 0 ) ,  we obtain 

K ; ~ ( x ,  X) = -4 d(l0g A)/dx. (51) 

By using (141, we obtain u2(x, t )  = b2-2(dK;2(x, x)/dx),  substituting (51) into this 
relation. we arrive at 

u2(x, t )  = b2+d2(log A)/dx2. (52) 

When N = 1, we obtain from (37), (38),  (46) and (47) that 

2b 
71 

A = 1 * - exp{( 7): - b2)1’2[4(27):+ b2) t  - 2x1 + 8) 

+ exp{ ( n :  - b2)1’2[8( 27): + b 2 )  t - 4x1 + 2S}, 

where 

6 = w 7 ) 1  I m(A l)l/2( 7): - b2)”21, 

(53) 

(54) 

and the - or + sign in (53) depends on whether m(A,)  is positive or negative 
respectively. Substituting (53) into (52), we obtain the one-soliton solution to the 
modified KdV equation 

2(77:- b 2 )  
(55) u ( x ,  t )  = b +  

6 * 71 cosh{ ( 7: - b2)  1’2[4(2t7: + b2) t  - 2x1 + S}’ 

We would remark that when b = 0, solution (55) is identical to that obtained via the 
inverse scattering method under vanishing boundary condition (Wadati 1972). 
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Next, we will show that when N = 2 the solution u ( x ,  t )  splits into two solitons of 
similar form to ( 5 5 )  when It1 + CO. For N = 2, the determinant A is 

e i(i, +i21x e i ( i l + 5 1 ) x  e i ( i l + i 2 ) x  

i(51+ 52) 
a1 

i ( l l +  51) 
a1 

i(51+ 52)  
a', 

e i ( i 2 + i 1 1 x  e i ( i 2 + i , ) x  e i (  i 2 + i z ) x  

i (52  + 52)  
-a2 

i(52 + 51) 
a2 

i( 5 2  + 51 1 
Without loss of generality, we assume 

771 < 772. 

In the case t + CO, consider first the region 

2( 277: + b2)  t - x = constant. 

Using (57)  and ( 5 8 ) ,  we obtain 

2(277?+ b2)t - x +. --Co. 

With (58) and ( 5 9 ) ,  the asymptotic form of A is 

1 0  0 0 

l o  1 0 0 

Substituting (60) into (52), we arrive at 

(56 )  

. ( 5 6 a )  
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X exp(4il2x) 

where 

st= In [q21m(~2)I /2(d-  ~2) ' /21 ,  (62) 
and the - or + sign in (61) depends on whether m(A2) is positive or negative 

a'2 a2 

i ( 5 2 + 5 2 )  i(f2+52) 

i ( 5 2  + 52) i(52 + 52) 

9 

-a2 a2 

respectively. Next, consider the region 

2(277:+b2)t-x=constant. 

2(27:+ b2)t-x+ +a. 

Using (57) and (63), we obtain 

With (63) and (64), the asymptotic form of A is 

A =  

Substituting (66) into (52), we arrive at 

Combining (61) and (68), we arrive at 

as t+m.  
By a similar argument, we obtain when t + -m, 
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where 

and 

and the choice of -ve or  +ve sign in (70) depends on whether m(A,) is positive or  
negative respectively. 

From equations (62),  (67) and (71), we see that the total phase shift for soliton 
one after collision is 

S , = S : - S ;  
(+ p ) 1 / 2 - ( +  b 2 ) ’ / 2  

= 2 In 2 1/29  (7$-b2)”*+(77:-b ) 

and the total phase shift for soliton two after collision is 

s,=s:-s; 
( 77; - b2) 112 - ( t7; - 62) 112 

= -2  In 2 1 /2 ’  (T:-b2)1/2+(77:-b ) 
(73) 

From (72)  and (73),  we see that soliton one shifts backwards after collision by an  
amount lAx,l where 

and soliton 2 shifts forwards after collision by an amount A x 2  where 

-1 ( 77 - b2) 112 - ( 77f - b ’ )  112 

AX? = (77; - b 2 ) 1 / ’  In (7: - b2)’/2+ (7) f  - b 2 ) 1 / 2 ‘  (75) 

We would remark again that when b = 0 the two-soliton solution is identical to that 
obtained via the inverse scattering method under vanishing boundary condition (Wadati 
1972). We  see from (74)  and (75) that the slower soliton shifts backwards while 
the faster soliton shifts forwards after collision. Also, we see from (72) and (73) that 
the total phase is conserved before and after the collision. This result is in general 
similar to that of the case under vanishing boundary condition. However, the vacuum 
parameter b modifies the velocity, amplitude, width and the total phase shift of the 
solitons. 

3. Conclusions 

(i) O u r  group of research workers have recently made an effort t o  find solutions 
for nonlinear equations with non-zero vacuum parameter b (Au and Fung 1982, Fung 
and Au  1982), via the Backlund transformation. Along this line of thought, we need 
also to  study the solutions of the same types of nonlinear equations using other methods, 
such as the inverse scattering method under certain non-vanishing boundary conditions. 
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We have just obtained solutions to  the K d v  equation under one  such boundary condition 
using the generalised inverse scattering method (Au-Yeung et a1 1984). To follow 
our sequence of research, we have presented new solutions to the modified KdV 

equation with non-zero vacuum parameter in this article. The  results of these two 
articles by the same authors indicate that we have to  study solutions outside the square 
integrable range. 

(ii) Based on our solutions ( 5 5 ) ,  the velocity of the Modified Kdv one-soliton is 

U =  2 ( 2 ~ ~ +  b2),  (76) 

where 77 is a positive real parameter (relation ( 3 7 ) ) .  The amplitude is 

if m ( i 7 )  is negative 
if m( i7 )  is positive' (-277 - 2bl 

while the width of the soliton is 

(77)  

(iii) The  one-soliton K d v  solution (55) with non-zero parameter b is 
new. The  velocity, amplitude and width are all generally dependent on b. The  
propagation velocity of the soliton is positive definite, whatever the values of b are. 
In other words, the velocity is uni-directional, being different from the property of 
the K d v  one-soliton with non-zero b (Au  and Fung 1982). We  would like to remark 
also that Fung and A u  (1982) have obtained another set of solutions to the modified 
K d v  equation (see equation ( 1 4 4  taking A = 0) and this solution is also uni-directional, 
namely, the direction of the velocity is independent of b, although the magnitude 
depends on  b. 

(iv) To further our research, we have established the general formalism for the  
N-soliton solution with non-zero vacuum parameter. As  a demonstration, we deduce 
that the two-soliton solution splits apart into two solitons when / t i  + E. The velocity, 
the amplitude, the width, the phase shifts and displacements of the two-solitons a re  
all controlled by the vacuum parameter b. This parameter is thus a physically significant 
quantity. If b takes zero value, our relevant two-soliton solution reduces to that 
obtained by Wadati (1972). 
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